

Civil Engineering for Mitigation of Risk from Natural Hazards

Course: Applied Mathematics A.Y.: 2020/2021, Dates: 19/11/2020 - 18/12/2020 Lecturer: Lorenzo Tamellini Teaching Assistant: Daniele Prada Classroom: online

Week	Date	Lecture hours	Tutorial hours	Subject	Tot h
1	19/11/2020	09:30/12:00	14:00/16:00	CLASS: free optimization EXER: Matlab basics, if/for/while statements, basic algorithms (bubblesort, bisection, Tomas)	5
	20/11/2020	09:30/11:00 14:00/15:00	15:00/17:00	CLASS: constrained opt, numerical methods for optimization (Finite Differences, Gradient) EXER: functions, @-functions, basic algorithms (bubblesort, bisection, Tomas)	5
2	23/11/2020				
	24/11/2020		16:30/18:30	EXER: optimization HW1 (Due date: Dec. 1)	2
	25/11/2020	13:15/18:30		CLASS: introduction to ODE, linear dynamical systems and their stability	5
	26/11/2020	13:15/15:15	15:30/18:30	CLASS: stability nonlinear dynamical systems, bifurcations EXER: ODE HW2 (Due date: Dec. 7)	5
	27/11/2020	14:15/17:15	17:30/18:30	CLASS: L^2 spaces, orthogonal polynomials, interpolation and least-squares approximation EXER: orthogonal pol_interpolation_least squares approx	4
3	30/11/2020				
	01/12/2020 (H1 due date)	14:15/16:15	16:30/18:30	CLASS: Fourier expansion (real and complex form) EXER: orthogonal pol. interpolation, least squares approx.	4
	02/12/2020	14:15/16:15	16:30/18:30	CLASS: DFT, Matlab's FFT EXER: Matlab's FFT	4
	03/12/2020	14:15/17:15	17:30/18:30	CLASS: Fourier transform; Dirac's delta EXER: Fourier transform	4
	04/12/2020	14:15/16:15	16:30/18:30	EXER: Fourier transform, HW3 (Due date: Dec. 11) CLASS: intro to PDE, elliptic PDEs (mean, average)	4
4	07/12/2020 (H2 due date)				
	08/12/2020			(holiday)	
	09/12/2020			(holiday)	
	10/12/2020	14:15/18:30		CLASS: elliptic PDE: smoothing, Finite Differences; heat PDE, fundamental solution, Duhamel principle, separation of variables	4
	11/12/2020 (H3 due date)		14:15/18:30	EXER: separation of variables, finite diff. HW4 (Due date: Dec. 15)	4
5	14/12/2020				
	15/12/2020 (H4 due date)	13:15/16;15	16:30/18:30	CLASS: linear transport PDE, wave PDE EXER: linear transport PDE, wave PDE	5
	16/12/2020				
	17/12/2020				
	18/12/2020				

OBJECTIVES: To provide advanced mathematical tools that will be used throughout the rest of the program.

DESCRIPTION:

The course is divided in five chapters as follows. Each chapter includes also exercises and hands-on Matlab sessions (32 hours of lectures + 23h hours of exercises/Matlab sessions).

- **1.** Introduction to Matlab and basic programming (4h exercises/Matlab). Basic Matlab commands, if/for/while instructions. Functions and @-functions. Design of basic algorithms.
- Optimization of N-variate functions (6h lectures + 2h exercises/Matlab = 8h). Free and constrained optimization of N-variate functions. Lagrange multipliers and KKT conditions. Optimization algorithms (Gradient, Newton, finite differences)
- **3.** Ordinary Differential Equations (ODE) (7h lectures + 3h exercises/Matlab = 10h). Scalar ODEs and system of ODEs. Analytic solutions of linear systems of ODEs (exponential matrix). Equilibria of linear and non-linear systems (linearization, Lyapunov's function) and bifurcations.
- **4.** Function approximation and Fourier transform (10h lectures + 8h exercises/Matlab = 18h). Space of square-summable functions, orthonormal bases and Parseval's identity, Fourier and Legendre expansions, interpolation and least squares approximation. Fourier transform, DFT/FFT, Dirac's delta.
- 5. Partial Differential Equations (PDE) (9h lectures + 6 exercises/Matlab = 15h).
 - a. **Elliptic and parabolic PDEs:** separation of variables, maximum and mean principle, smoothing property. Fundamental solution of heat equation. Separation of variables, finite differences.
 - **b.** Hyperbolic PDEs: method of lines for 1st order hyperbolic PDEs, inflow and outflow; D'Alambert formula for wave equation on the line and semiline, separation of variables

REFERENCES:

Class notes made available during the course. For backup and further readings:

- **Optimization of N-variate functions (Ch. 2):** J. Nocedal, S. Wright. Numerical Optimization. Springer;
- Ordinary Differential Equations (Ch. 3): G. Teschl, Ordinary Differential Equations and Dynamical Systems, American Mathematical Society; Blanchard, Devaney, Hall. Differential Equations, Cengage Learning.
- Function approximation, transforms (Ch. 4), programming of numerical algorithms (Ch. 1): A. Quarteroni, R. Sacco, F. Saleri. Numerical Mathematics. Springer; D. Kammler, A First Course in Fourier Analysis, Cambridge University Press;
- **Partial Differential Equations (Ch. 5):** S. Salsa, Partial Differential Equations in Action, Springer; L. Evans, Partial Differential Equations. American Mathematical Society

Italian-speaking students can also use these books:

- Chapters 2,3,4: Analisi Matematica 2, M. Bramanti, C. Pagani, S. Salsa, Zanichelli ed.;
- Chapter 5: Equazioni a Derivate Parziali Metodi, modelli e applicazioni, S. Salsa, Springer;

ASSESSMENT:

The final grade will be composed as follows:

- 30% homework assignments (four in total) graded during the course;
- 70% oral discussion over
 - o exercises and Matlab scripts discussed in class;
 - o one chapter of choice of the student.

COURSE WEBSITE: https://sites.google.com/view/tamellini-applied-mathematics