

Civil Engineering for Mitigation of Risk from Natural Hazards

Course: Seismic Risk Assessment

a.y.: 2021-2022

Lecturer: Prof. Paolo Bazzurro, Prof. Dimitrios Vamvatsikos, Dr. Mohsen Kohrangi

Date: 20/09/2021 - 19/10/2021

Classroom: See timetable below for more details

Course schedule

Week	Date	Lecture hours	Tutorial hours	Classroom Subject		Tot
		From	From			h
		То	То			
	20/09/2021	10.00 – 12.00		IUSS, Sala del Camino	Risk Assessment: theory	4
		14.00 – 16.00		1033, Sala del Callillo		
	22/09/2021	10.00 – 12.00			Risk Assessment: theory	4
		14.00 – 16.00		IUSS, 1-17		
1			16.30 – 18.30			
	23/09/2021	10.00 – 12.00		IUSS, 1-17	Risk Assessment: theory	
		14.00 – 16.00		1033, 1-17		6
	24/09/2021	10.00 – 12.00		IUSS, 1-15	Risk Assessment: theory	4
	24/03/2021		14.30 – 16.30	1033, 1-13	Misk Assessment. theory	
	27/09/2021	10.00 - 12.00		IUSS, 1-17	Risk Assessment: theory	4
		14.00 – 16.00		1033, 1-17		
2	28/09/2021	10.00 - 12.00		IUSS, 1-17	Risk Assessment: theory	4
		14.00 – 16.00		1033, 1-17		
	29/09/2021	10.00 - 12.00		IUSS, 1-17	Risk Assessment: theory	2
	30/09/2021	10.00 – 12.00		IUSS, 1-17	Risk Assessment: theory	2
	04/10/2021	10.30 – 12.30			Single Building earthquake risk assessment	6
		14.00 – 16.00		IUSS, 1-17		
			16.00 – 18.00		non dosessinent	
	05/10/2021	10.30 – 12.30			Single Building earthquake risk assessment	6
3		14.00 – 16.00		IUSS, 1-17		
			16.00 – 18.00			
	06/10/2021	10.30 – 12.30			Single Building earthquake risk assessment	6
		14.00 – 16.00		IUSS, 1-17		
			16.00 – 18.00			
	07/10/2021	10.30 – 12.30			Single Building earthquake	
		14.00 – 16.00		IUSS, 1-17	risk assessment	6

			16.00 – 18.00				
	08/10/2021	10.30 – 12.30		IUSS, 1-17	Single Building earthquake risk assessment	4	
		14.00 – 16.00		IUSS, 1-17	Single Building Exam		
	11/10/2021	09.30 -11.30		On line	Introduction – Seismic portfolio Loss assessment (Pratical aspects)	4	
4		13.30 – 15.30			Final Project introduction and discussion		
	12/09/2021	09.30 -11.30			Seismic Risk Analysis with		
			13.30 – 15.30	On line	OpenQuake – from hazard to loss calculation	4	
	13/10/2021	09.30 – 11.30		On line	Vulnerability/Fragility Analysis	2	
	14/10/2021		13.30 – 15.30		Project results and discussion	2	
5	18/10/2021	09.00 – 11.00			FINAL EXAM	2	
	19/10/2021	09.00 – 12.00			Final Portfolio Risk assessment project presentation	3	

Overview of the course

This course comprises three distinct but well-connected parts. The main focus of the course is on seismic risk but, despite its official title, it will also deal with risk assessment for other perils.

This course will start with a very succinct overview of the basics of probability and statistics that are commonly used in the field of hazard and risk assessment. The knowledge of the subject is a pre-requisite of the course. After this preamble, in the <u>first part</u> we will move on to describe the basics of risk assessment and loss estimation for assets subject to natural events such as earthquakes and tropical cyclones. In this part we will also review the fundamentals of seismic hazard analysis and we will cover both probabilistic and deterministic approaches. Then <u>we</u> will deal with the theory behind catastrophe risk modeling of portfolios of structures mostly for earthquakes but will briefly discuss tropical cyclones as well. The applications discussed are typical of those found in the insurance/reinsurance industry, capital markets, and sovereign disaster risk financing. Therefore, some fundamentals of insurance/reinsurance will also be provided. Then we will introduce the concepts of seismic risk for single structures and we will compare and contrast them with the approach for portfolio of assets. Time permitting, we will discuss the risk assessment of networks and of nuclear power plants. These cases have special aspects that are not found in the previous applications discussed during the course.

The <u>second part</u> of the course will tackle in detail the state-of-the art approach to assess seismic risk of single buildings for both collapse and loss estimation purposes. The techniques that you will learn here are applicable both to the design of new buildings and to the assessment of existing ones.

Finally the <u>third and last part</u> will focus on the application of the portfolio seismic risk assessment theory to real case studies. In this part you will be using models already built and the emphasis will be in learning how to compute and interpret correctly their results.